Mimo-tops Mode for High-resolution Ultra- Wide-swath Full Polarimetric Imaging
نویسندگان
چکیده
The novel TOPS mode can achieve wide swath imaging coverage at the cost of impaired azimuth resolution. MIMO-SAR systems combined with multi-channel SAR signal reconstruction in azimuth and digital beamforming (DBF) on receive in elevation can overcome the inherent contradiction between swath width and azimuth resolution of conventional SAR systems. This paper derives a novel spaceborne MIMO-TOPS mode for high-resolution ultra-wide-swath full polarimetric imaging. In such an imaging scheme, different polarimetric waveforms with different elevation beam pointing directions and short time delays are transmitted in a single pulse repetition interval (PRI) by different sub-aperture antennas in azimuth. Besides improving the desired signal-to-noise ratio (SNR) and suppressing ambiguous energy in elevation, a novel DBF on receive approach including two steps is adopted to separate different echoes corresponding to sub-pulses with different polarizations. The design example of a full polarimetric MIMO-TOPS SAR system, which allows for the imaging capacity to cover an ultra wide swath of 400 km with a high azimuth resolution of 3 m, is given to validate the proposed imaging scheme.
منابع مشابه
ASTC-MIMO-TOPS Mode with Digital Beam-Forming in Elevation for High-Resolution Wide-Swath Imaging
Future spaceborne synthetic aperture radar (SAR) missions require complete and frequent coverage of the earth with a high resolution. Terrain Observation by Progressive Scans (TOPS) is a novel wide swath mode but has impaired azimuth resolution. In this paper, an innovative extended TOPS mode named Alamouti Space-time Coding multiple-input multiple-output TOPS (ASTC-MIMO-TOPS) mode combined wit...
متن کاملMulti-channel Spcmb-tops Sar for High- Resolution Wide-swath Imaging
To improve the impaired azimuth resolution of the novel Terrain Observation by Progressive Scans (TOPS) mode, a new multichannel single phase center multiple beam (SPCMB) TOPS mode is proposed in this paper for high-resolution wide-swath (HRWS) imaging. However, the progressive azimuth beam scanning leads to the Doppler spectrum aliasing and both beam center time and Doppler centroid varying wi...
متن کاملMulti-Channel ScanSAR for High-Resolution Ultra-Wide-Swath Imaging
Multi-channel radar systems allow for overcoming the inherent limitation of conventional synthetic aperture radar (SAR). An example is the combination of digital beamforming on receive in elevation with multi-aperture SAR signal reconstruction in azimuth which enables high-resolution wide-swath imaging [1]. As a next step, focus is turned to advanced concepts for the imaging of even wider swath...
متن کاملA New Spaceborne Burst Synthetic Aperture Radar Imaging Mode for Wide Swath Coverage
This paper presents a new spaceborne synthetic aperture radar (SAR) burst mode named “Extended Terrain Observation by Progressive Scans (ETOPS)” for wide swath imaged coverage. This scheme extends the imaging performance of the conventional Terrain Observation by Progressive Scans (TOPS) mode with a very limited azimuth beam steering capability. Compared with the TOPS mode with the same azimuth...
متن کاملA Wide-Swath Spaceborne TOPS SAR Image Formation Algorithm Based on Chirp Scaling and Chirp-Z Transform
Based on the terrain observation by progressive scans (TOPS) mode, an efficient full-aperture image formation algorithm for focusing wide-swath spaceborne TOPS data is proposed. First, to overcome the Doppler frequency spectrum aliasing caused by azimuth antenna steering, the range-independent derotation operation is adopted, and the signal properties after derotation are derived in detail. The...
متن کامل